Follow Us @soratemplates

Wednesday, January 9, 2019

GETARAN

Getaran

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Jump to navigationJump to search

Salah satu mode getaran gendang
Getaran adalah suatu gerak bolak-balik di sekitar kesetimbangan. Kesetimbangan di sini maksudnya adalah keadaan di mana suatu benda berada pada posisi diam jika tidak ada gaya yang bekerja pada benda tersebut. Getaran mempunyai amplitudo (jarak simpangan terjauh dengan titik tengah) yang sama.
Jenis getaran[sunting | sunting sumber]
Getaran bebas terjadi bila sistem mekanis dimulai dengan gaya awal, lalu dibiarkan bergetar secara bebas. Contoh getaran seperti ini adalah memukul garpu tala dan membiarkannya bergetar, atau bandul yang ditarik dari keadaan setimbang lalu dilepaskan.
Getaran paksa terjadi bila gaya bolak-balik atau gerakan diterapkan pada sistem mekanis. Contohnya adalah getaran gedung pada saat gempa bumi.

Analisis getaran[sunting | sunting sumber]

Dasar analisis getaran dapat dipahami dengan mempelajari model sederhana massa-pegas-peredam kejut. Struktur rumit seperti badan mobil dapat dimodelkan sebagai "jumlahan" model massa-pegas-peredam kejut tersebut. Model ini adalah contoh osilator harmonik sederhana.

Getaran bebas tanpa peredam[sunting | sunting sumber]


Model massa-pegas sederhanal
Pada model yang paling sederhana redaman dianggap dapat diabaikan, dan tidak ada gaya luar yang memengaruhi massa (getaran bebas).
Dalam keadaan ini gaya yang berlaku pada pegas Fs sebanding dengan panjang peregangan x, sesuai dengan hukum Hooke, atau bila dirumuskan secara matematis:
dengan k adalah tetapan pegas.
Sesuai Hukum kedua Newton gaya yang ditimbulkan sebanding dengan percepatan massa:
Karena F = Fs, kita mendapatkan persamaan diferensial biasa berikut:

Gerakan harmonik sederhana sistem benda-pegas
Bila kita menganggap bahwa kita memulai getaran sistem dengan meregangkan pegas sejauh A kemudian melepaskannya, solusi persamaan di atas yang memerikan gerakan massa adalah:
Solusi ini menyatakan bahwa massa akan berosilasi dalam gerak harmonis sederhana yang memiliki amplitudo A dan frekuensi fn. Bilangan fn adalah salah satu besaran yang terpenting dalam analisis getaran, dan dinamakan frekuensi alami takredam. Untuk sistem massa-pegas sederhana, fn didefinisikan sebagai:
Catatan: frekuensi sudut  () dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namun besaran ini biasanya diubah ke dalam frekuensi "standar" (satuan Hz) ketika menyatakan frekuensi sistem.
Bila massa dan kekakuan (tetapan k) diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.

Getaran bebas dengan redaman[sunting | sunting sumber]

Mass Spring Damper Model
Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam fluida benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) c ini dinamakan koefisien peredam, dengan satuan N s/m (SI)

Dengan menjumlahkan semua gaya yang berlaku pada benda kita mendapatkan persamaan
Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namun pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik redaman kritis. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.
Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:
Untuk mengkarakterisasi jumlah peredaman dalam sistem digunakan nisbah yang dinamakan nisbah redaman. Nisbah ini adalah perbandingan antara peredaman sebenarnya terhadap jumlah peredaman yang diperlukan untuk mencapai titik redaman kritis. Rumus untuk nisbah redaman () adalah
Sebagai contoh struktur logam akan memiliki nisbah redaman lebih kecil dari 0,05, sedangkan suspensi otomotif akan berada pada selang 0,2-0,3.
Solusi sistem kurang redam pada model massa-pegas-peredam adalah

Nilai X, amplitudo awal, dan ingsutan fase, ditentukan oleh panjang regangan pegas.
Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namun frekuensi osilasi berbeda daripada kasus tidak teredam.
Frekuensi dalam hal ini disebut "frekuensi alamiah teredam", fd, dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.
Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namun untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.
https://id.wikipedia.org/wiki/Getaran

PENGERTIAN & RUMUS GETARAN DAN GELOMBANG




A. GETARAN

Getaran adalah gerakan bolak-balik suatu benda melalui titik setimbang. Perhatikan gambar dibawah :



Dari gambar diatas, kita bisa liat bahwa satu getaran penuh dari ilustrasi bandul tersebut teridiri dari :

a. B-A-B-C-B 
b. A-B-C-B-A 
c. C-B-A-B-C

Semogakalian bisa ngerti ya, kalo gw jelasinnya kayak gitu. Kalo nggak ngerti ya dimengerti. Iya kan?


1. Simpangan dan Amplitudo Getaran 

Simpangan adalah jarak beban ketitik setimbang. 


Coba kalian perhatiin gambar pegas dibawah. Walaupun nggak mirip tapi anggap aja itu pegas. OK!

 


Dari gambar di atas, kita bisa liat kalo titik setimbangnya berada pada huruf "a". Ketika jarak beban ketitik setimbang 1 cm, kita katakan simpangan getaran 1 cm. Ketika jarak beban ketitik setimbang itu 3 cm, kita katakan simpangan getaran 3cm. Demikian seterusnya. Simpangan berubah tiap waktu karena benda mendekati atau menjauhi titik setimbang.



Sedangkan amplitudo adalah simpangan terbesar dari suatu getaran. Besaran amplitudo dilambangkan dengan huruf "A". Dari gambar diatas kita bisa liat kalo amplitudo dari pegas tersebut adalah jarak a-b atau jarak a-c.


2. Periode Getaran

 Periode getaran adalah waktu yang diperlukan benda untuk melakukan suatu getaran. Periode getaran dilambangkan dengan huruf T. Untuk menentukan periode getaran kita dapat mengukur langsung waktu yang diperlukan untuk melakukan satu getaran penuh.

Namun, cara mengukur semacam ini seringkali menimbulkan kesalahan karena salah satu getaran biasanya berlangsung sangat singkat. 

Oleh karena itu, biasanya kita mengukur waktu yang diperlukan benda untuk melakukan sejumlah getaran. Periode getaran dapat dihitung dari waktu yang tercatat dibagi jumlah getaran.

Untuk mempermudah, kita bisa gunakan persamaan berikut.




3. Frekuensi Getaran

Frekuensi getaran adalah banyaknya getaran yang dilakukan benda setiap detik. Frekuensi dilambangkan dengan huruf "f". Satuan frekuensi adalah getaran per sekon atau diberi istilah khusus, yaitu hertz disingkat Hz.

Untuk menentukan frekuensi pada suatu getaran, kita bisa gunakan persamaan berikut ini.

Dengan :

f = frekuensi getaran (Hz)
N = jumlah getaran
t = waktu untuk sekali getaran





Getaran

alarm getaran
1. Pengertian Getaran
a. Definisi Getaran
Getaran adalah gerak bolak – bolik secara berkala melalui suatu titik keseimbangan. Pada umumnya setiap benda dapat melakukan getaran. Suatu benda dikatakan bergetar bila benda itu bergerak bolak bolik secara berkala melalui titik keseimbangan.
ayunan movie
pendulum
Getaran adalah gerak bolak – balik di sekitar titik setimbang;
2 = titik setimbang ;  1 dan 3 = titik terjauh (Amplitudo);
b. Beberapa Contoh Getaran
Beberapa contoh getaran yang dapat kita jumpai dalam kehidupan sehari – hari antara lain :
– sinar gitar yang dipetik
– bandul jam dinding yang sedang bergoyang
jam dinding
– ayunan anak-anak yang sedang dimainkan
– mistar plastik yang dijepit pada salah satu ujungnya, lalu ujung lain diberi simpangan dengan cara menariknya, kemudian dilepaskan tarikannya.
img_mid_4430
– Pegas yang diberi beban.
ayunanCoil_spring_animation
2. Periode dan Frekuensi Getaran
Perhatikan gambar berikut ini!
definisi2
  • titik A merupakan titik keseimbangan
  • simpangan terbesar terjauh bandul ( ditunjuk kan dengan jarak AB = AC ) disebut amplitudo getaran
  • jarak tempuh B – A – C – A – B disebut satu getaran penuh
a. Amplitudo
Dalam gambar 2 telah disebutkan bahwa amplitudo adalah simpangan terbesar dihitung dari kedudukan seimbang. Amplitudo diberi simbol A, dengan satuan meter.
b. Periode Getaran
Periode getaran adalah waktu yang digunakan dalam satu getaran dan diberi simbol T. Untuk gambar ayunan di atas, jika waktu yang diperlukan oleh bandul untuk bergerak dari B ke A, ke C, ke A, dan kembali ke B adalah 0,2 detik, maka periode getaran bandul tersebut 0,2 detik atau T = 0,2 detik = 0,2 s
Periode suatu getaran tidak tergantung pada amplitudo getaran.
c. Frekuensi Getaran
Frekuensi getaran adalah jumlah getaran yang dilakukan oleh sistem dalam satu detik, diberi simbol f. Untuk sistem ayunan bandul di atas, jika dalam waktu yang diperlukan oleh bandul untuk bergerak dari B ke A, A ke C, C ke A, dan kembali ke B sama dengan 0,2 detik, maka :
– dalam waktu 0,2 detik bandul menjalani satu getaran penuh
– dalam waktu 1 detik bandul menjalani 5 kali getaran penuh
Dikatakan bahwa frekuensi getaran sistem bandul tersebut adalah 5 getaran/detik atau f = 5 Hz.
d. Hubungan antara Periode dan Frekuensi Getaran
Dari definisi periode dan frekuensi getaran di atas, diperoleh hubungan :
rumus1
Keterangan :
T = periode, satuannya detik atau sekon
f = frekuensi getaran, satuannya 1/detik atau s-1 atau Hz
Contoh Soal :
1. Dalam 1 sekon, lintasan yang ditempuh beban pada Gambar 1 adalah 2-1-3-1-2-1-3. Berapakah frekuensi dan periode getaran tersebut?
Penyelesaian :
Jumlah getaran yang terjadi adalah 1,5 getaran. Waktu untuk menempuh 1,5 getaran adalah 1 sekon. Jadi frekuensi f = 1,5 getaran / sekon = 1,5 Hz. Dan periode T :
soal1
Jadi waktu yang diperlukan untuk menempuh satu getaran penuh adalah 0,67 sekon.
2. Pada selang waktu 2 sekon terjadi gerakan bolak – balik sebanyak 10 kali. Tentukanlah frekuensi dan periodenya.
Penyelesaian :
Dalam 2 sekon terjadi 10 getaran. Berarti dalam 1 sekon terjadi 5 getaran, sehinga frekuensi f = 5 Hz, dan
periode T :
soal2


Getaran SMP - YouTube


Dec 11, 2015 - Uploaded by Mr tutor
Getaran adalah gerak bolak - balik suatu benda secara periodik melalui titik setimbangnya Contoh ...
Oct 26, 2017 - Uploaded by belajar bareng
Berisi mengenai materi dan contoh soal sekaligus pembahasan mengenaigetaran semoga ...

No comments:

Post a Comment